22330

11819 3 Hours / 70 Marks

Seat No.

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

			Marks
1.	Attempt any FIVE of the following :		10
	(a)	Define :	
		(i) Admittance	
		(ii) Conductance	
	(b)	Write the equation of open circuit Z parameter.	
	(c)	Draw phasor diagram for R-L series circuit.	
	(d)	Draw resonance curve for series resonance.	
	(e)	Define :	
		(i) Node	
		(ii) Branch	
	(f)	State Thevenins theorem.	
	(g)	Write the formula for Delta to Star conversion giving examples.	

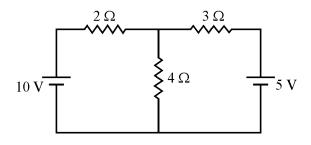
[1 of 4] P.T.O.

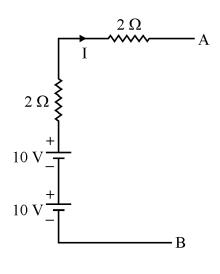
2. Attempt any THREE of the following :

- (a) For RLC series circuit draw voltage triangle, power triangle and impedance triangle along with proper labellings and equations for condition $V_L > V_C$.
- (b) Define and state equations for (i) Active Power (ii) Reactive Power (iii) Apparent Power
- (c) Explain the steps for converting practical voltage source into practical current source.
- (d) Three resistances 32 Ω , 40 Ω , 48 Ω are connected in star circuit. Determine its equivalent delta circuit.

3. Attempt any THREE of the following :

- (a) If $Z_1 = 3 + j7$ and $Z_2 = 12 j16$ are connected in parallel. Find the equivalent impedance of combination.
- (b) Determine Bandwidth and Quality factor (Q) for the series circuit.
- (c) Using Mesh Analysis find current through 4 Ω resistance. (Refer fig. 1)




Fig. 1

(d) Explain the procedure for solving Thevenins theorem using suitable example.

12

4. Attempt any THREE of the following :

- (a) A coil has resistance of 4 Ω and an inductance of 9.55 mH. Calculate
 (i) Reactance (ii) The impedance (iii) The current taken from 240 V, 50 Hz supply.
- (b) Draw the phasor diagrams for a series RL and series RC with AC supply.
- (c) Compare series and parallel circuits.
- (d) Using source transformation technique find the resultant current (I) through circuit. (Refer fig. 2)

Fig. 2

(e) Using super-position theorem find current through 4 Ω resistance. (Refer fig. 3)

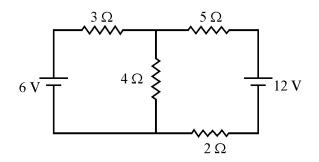
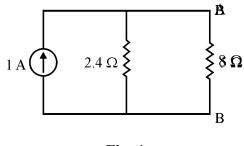
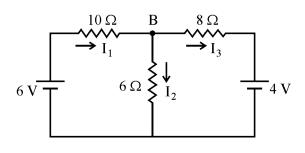



Fig. 3

P.T.O.

5. Attempt any TWO of the following :


- (a) Derive the expression for resonance frequency for parallel circuit.
- (b) Calculate current through 8 Ω resistance using Norton's theorem. (Refer fig. 4)

- Fig. 4
- (c) Explain ' Π ' and 'T' circuit with proper phasor diagram.

6. Attempt any TWO of the following :

(a) Calculate the nodal voltage V_B using nodal analysis. (Refer fig. 5)

- (b) State and explain :
 - (i) Maximum power transfer
 - (ii) Reciprocity theorem
- (c) Explain significance of two-port network. Also draw two port network for(i) Cascade configuration ABCD parameter (ii) Series configuration.

22330

12