22320

11920 3 Hours /	70	Marks Seat No.
Instructions –	(1)	All Questions are Compulsory.
	(2)	Answer each next main Question on a new page.
	(3)	Illustrate your answers with neat sketches wherever necessary.
	(4)	Figures to the right indicate full marks.
	(5)	Assume suitable data, if necessary.
	(6)	Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any <u>FIVE</u> of the following:

- a) Convert (D8F)₁₆ into binary and octal.
- b) Draw Symbol, Truth Table and logic equation of Ex-OR gate.
- c) State the DeMorgan's Theorems.
- d) Convert the following expression into standard SOP form. $Y = AB + A\overline{C} + BC$
- e) Draw symbol and write truth table of D and T Flip Flop.
- f) Write down number of flip flops are required to count 16 clock pulses.
- g) List the types of DAC

Marks

10

2.		Attempt any <u>THREE</u> of the following:	12			
	a)	Perform the subtraction using 2'S Complement methods.				
		$(52)_{10} - (65)_{10}$				
	b)	Simplify the following Boolean Expression and Implement using logic gate.				
		$AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD$				
	c)	Minimize the four variable logic function using K map.				
		$f(A,B,C,D) = \sum m(0, 1, 2, 3, 5, 7, 8, 9, 11, 14)$				
	d)	Implement the following functions using demultiplexer.				
		$f_1 = \sum m (0, 2, 4, 6)$				
		$f_2 = \sum m (1, 3, 5)$				
3.		Attempt any <u>THREE</u> of the following:	12			
a)	a)	Realize the following logic expressions using only NAND gates.				
		(i) OR				
		(ii) AND				
		(iii) NOT				
	b)	Draw binary to gray converter and write its truth table.				
	``					

- c) Describe the working of JK flip flop with truth table and logic diagram.
- d) Describe the working of 4 bit SISO (serial in serial out) Shift Register with diagram and waveform if input is 01101.

4. Attempt any <u>THREE</u> of the following:

- 12
- a) Design a full Adder using Truth Table and K-map.
- b) Describe the working of ring counter using D flip flop with diagram and waveforms.
- c) Draw block diagram of programmable logic Array.
- d) Compare the following:
 - (i) Volatile with Non Volatile.
 - (ii) EPROM with EEPROM.
- e) Describe the working principle of successive approximation ADC.

Marks

12

5. Attempt any <u>TWO</u> of the following:

- a) (i) Convert the following binary number $(11001101)_2$ into Gray Code and Excess-3 Code.
 - (ii) Perform the BCD Addition.

 $(17)_{10} + (57)_{10}$

(iii) Perform the binary addition.

 $(10110 \cdot 110)_2 + (1001 \cdot 10)_2$

- b) Design a 4bit ripple counter using JK flip flop, with truth table and waveforms.
- c) Calculate the analog output for 4 bit weighted register type DAC for inputs
 - (i) 1011

(ii) 1001

Assume (V_{fs}) full scale range of voltage is 5V

6. Attempt any <u>TWO</u> of the following:

12

- a) Compare TTL, CMOS and ECL logic family on the following points.
 - (i) Basic Gates
 - (ii) Propogation delay
 - (iii) Fan out
 - (iv) Power Dissipation
 - (v) Noise immunity
 - (vi) Speed Power Product.
- b) Design a BCD adder using IC 7483.
- c) Design a 3 bit synchronous counter using JK FlipFlop.

11920 3 Hours / 70 Marks