tified)

MAHARASHTF (Autonomous) (ISO/IEC - 2700

WINTER - 19EXAMINATION

Subject Code: 22426

Subject Name: Microcontroller & Application Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Ansv	ver	Marking Scheme
Q.1		Attempt any FI	VE of the following:		10M
	a)	Compare addres	s bus and data bus used in 8	051.	2M
	Ans:	Sr. No.	Address Bus	Data Bus	1M each
		1	A bus that is used to specify a physical address in memory	A bus that is used to transmit data among components	(Any 2 points)
		2	Unidirectional	Bidirectional	
		3	Helps to transfer memory address of data and I/O	Helps to send and receive data	
		4	16 bit address bus in 8051	8 bit data bus in 8051	
	b)	Calculate the nu	mber of address lines requir	ed to access 16 kB ROM.	2M
	Ans:	14 address lines re 2 $^{14} = 16$ KB	equired to access 16 KB of RC	DM as	2M
	c)	State features of	ADC 0808.		2M
	Ans:	 Eight char Can measure On chip C 	terface with all Microprocesson nnel 8-bit ADC module. ure up to 8 Analog values. Clock not available, external Os tput various from 0 to 255, op		1M each (Any 2 points)
	d)	List specification	ns of 8051 microcontroller.		2M
	Ans:	1) 8- bit data	bus and 8- bit ALU.		1M each
		2) 16- bit add	dress bus – can access maximu	m 64KB of RAM and ROM.	(Any 2
		3) On- chip I	RAM -128 bytes (Data Memor	y)	points)
		4) On- chip I	ROM – 4 KB (Program Memo	ry)	

	ports. 6) Progr 7) Two 8) Work 9) Has p 10) Six in	ammable serial ports i.e. One UAR' 6- bit timers- Timer 0& Timer 1 s on crystal frequency of 11.0592 M	1Hz controller when no operation is perfor	
e) Ans:	MOV A,#001 CLR A		ulator zero murvidualiy.	2M 1M each
f)	Compare da	ta memory and program memory	7.	2M
Ans:	Sr.N	o. Program Memory	Data Memory	1M each
	1	It is used for storing the hexadecimal codes of the program to be executed i.e. instructions. Program Memory of 8051 is	It is used for storing temporary variable data and intermediate results. Data Memory of 8051 is 128	
	2	4kB	bytes	
g)	List SFR in	8051. (any four)		2M
Ans:	 DPTF PC : I Stack PSW Port I Serial Timer Power 	and B registers – 8 bit each : [DPH:DPL] – 16 bit combined Program Counter – 16 bits pointer SP – 8 bit : Program Status Word atches data buffer, serial control Registers (TCON,TMOD,TL0/1,T · control upt Enable, Interrupt Priority	Ή0/1)	¹ / ₂ M each

									12-
Q.2		Attempt any THRE	E of the f	following:					Total
									Mark
	a)	Compare any three and Interrupts.	derivativ	es of 8051 m	icrocontr	oller on	the basis of	RAM,ROM,Timer	4 M
	Ans:	Features	8051	8052	89c52	8031	8751	89v51 RD2	1M each
		RAM	128	256	256	128	128	1k	(Any 4
		ROM	4K (mask	8K (EPROM)	8K (Flash)	0	4K (UV- EPROM)	64KB (FLASH)	Points

		ROM)						
	TIMER	2	3	3	2	2	3	
	INTERRUPTS	6	8	8	6	6	8	
b)	Draw and explain th	e interfa	cing of DAC	to 8051.	<u> </u>			4 M
Ans:	Diagram:							2M
		2 7 V v v v	-	3^{5k}	ligital for	1k 0.1uF	TO SCOPE Vout = 0 to 10V	2M
	DAC which coIn the figure sh equivalent ana	onverts di nown, we log currer	gital data int use 8-bit DA nt. Hence we	o equivale AC 0808. '	ent analog This IC co	g voltage. onverts 8 bi	it necessary to use t digital data into convert this current	-
	 DAC which co In the figure sh equivalent ana into equivalent 	onverts di nown, we log curren t voltage.	gital data int use 8-bit DA nt. Hence we	o equivale AC 0808. ' require a	ent analog This IC co n I to V c	g voltage. onverts 8 bi	t digital data into	natio
c)	DAC which co In the figure sh equivalent ana into equivalent Describe 8051 micro	onverts di nown, we log curren t voltage. controlle	gital data int use 8-bit DA nt. Hence we r as boolean	o equivale AC 0808. ' require a processo	ent analog This IC co n I to V c or.	g voltage. onverts 8 bi converter to	t digital data into convert this current	natio
c) Ans:	 DAC which co In the figure sh equivalent and into equivalent Describe 8051 micro 8051 processor The 8051 processor The internal R other addressa All port lines a The instruction complete set o The 8051 instruction provides direct single bit varia Boolean expre Eg: CLR C media 	onverts di nown, we log current t voltage. controlle r is a CPU cessor cont AM cont ble bits. are bit-ado ns that a f move, s ruction set t support table to p ssion. Bit eans clear	gital data intr use 8-bit DA nt. Hence we r as boolean J that can per ntains a comp tains 128 add dressable, an access these et, clear, con et is optimize for bit manip perform logid ts may be set the carry bit	o equivale AC 0808.7 require a processo rform som plete Bool hressable h d each can bits are plement, ed for the pulation an cal operat or cleared	ent analog This IC con n I to V con or. The operative ean proceed bits, and the not only OR, and one bit on not testing ions there i na sing	g voltage. onverts 8 bit onverter to on on a data essor for sin the SFR spa- ed as a separ conditiona AND instru- perations. To of individu efore 8051 gle instructio	t digital data into convert this current a and gives the output. gle-bit operations. ace supports up to 128 rate single-bit port. l branches but also a actions. The Boolean processor al bit allows the use of can be used to solve	natio
,	 DAC which co In the figure sh equivalent and into equivalent Describe 8051 micro 8051 processor The 8051 processor The internal R other addressar All port lines a The instruction complete set o The 8051 instru- provides direct single bit varia 	onverts di hown, we log current t voltage. controlle r is a CPU cessor cont AM cont ble bits. are bit-add ns that a f move, s ruction set t support able to p ssion. Bit eans clear ans set the	gital data intr use 8-bit DA nt. Hence we r as boolean J that can per ntains a comp cains 128 add dressable, an access these et, clear, con et is optimize for bit manip perform logic ts may be set the carry bit e memory bit	o equivale AC 0808.7 require a processo rform som plete Bool d each can bits are aplement, ed for the pulation ar cal operat or cleared	ent analog This IC con n I to V con or. The operative ean proceed bits, and the not only OR, and one bit on not testing ions there i na sing	g voltage. onverts 8 bit onverter to on on a data essor for sin the SFR spa- ed as a separ conditiona AND instru- perations. To of individu efore 8051 gle instructio	t digital data into convert this current a and gives the output. gle-bit operations. ace supports up to 128 rate single-bit port. l branches but also a actions. The Boolean processor al bit allows the use of can be used to solve	natio
Ans:	 DAC which co In the figure she equivalent and into equivalent and into equivalent Boscribe 8051 micro 8051 processor The 8051 processor The internal R other addressar All port lines a The instruction complete set or The 8051 instruction complete set or The 8051 instruction generation of the set of the set	onverts di hown, we log current t voltage. controlle r is a CPU cessor cont AM cont ble bits. are bit-add ns that a f move, s ruction set t support able to p ssion. Bit eans clear ans set the	gital data intr use 8-bit DA nt. Hence we r as boolean J that can per ntains a comp cains 128 add dressable, an access these et, clear, con et is optimize for bit manip perform logic ts may be set the carry bit e memory bit	o equivale AC 0808.7 require a processo rform som plete Bool d each can bits are aplement, ed for the pulation ar cal operat or cleared	ent analog This IC co n I to V c or. ne operative ean proceed bits, and the not only OR, and one bit on nd testing ions there I in a sing	g voltage. onverts 8 bit onverter to on on a data essor for sin the SFR spa- ed as a separ conditiona AND instru- perations. To of individu efore 8051 gle instructio	t digital data into convert this current a and gives the output. gle-bit operations. ace supports up to 128 rate single-bit port. l branches but also a actions. The Boolean processor al bit allows the use of can be used to solve	antic 4M 4M
Ans:	 DAC which co In the figure sh equivalent ana into equivalent Describe 8051 micro 8051 processor The 8051 processor The internal R other addressa All port lines a The instruction complete set o The 8051 instruction provides direct single bit vari Boolean expre Eg: CLR C me SETB 20h mea 	onverts di hown, we log current t voltage. controlle r is a CPU cessor cont AM cont ble bits. are bit-add ns that a f move, s ruction set t support able to p ssion. Bit eans clear ans set the	gital data intr use 8-bit DA nt. Hence we r as boolean J that can per ntains a comp cains 128 add dressable, an access these et, clear, con et is optimize for bit manip perform logic ts may be set the carry bit e memory bit	o equivale AC 0808.7 require a processo rform som plete Bool d each can bits are aplement, ed for the pulation ar cal operat or cleared	ent analog This IC co n I to V c or. ne operative ean proceed bits, and the not only OR, and one bit on nd testing ions there I in a sing	g voltage. onverts 8 bit onverter to on on a data essor for sin the SFR spa- ed as a separ conditiona AND instru- perations. 7 of individu efore 8051 gle instructio	t digital data into convert this current a and gives the output. gle-bit operations. ace supports up to 128 rate single-bit port. l branches but also a actions. The Boolean processor al bit allows the use of can be used to solve	

BOARD OF TECHNICAL EDUCATION

	 then it access internal and external program memories (ROMS). ii) Pin 29- PSEN : This is an output pin. PSEN stands for "program store enable." It is active low O/P signal. It is used to enable external program memory (ROM). When [PSEN(bar)]= 0, then external program memory becomes enabled and micro controller read content of external memory location. Therefore it is connected to (OE) of external ROM. iii) Pin 21-28: A₈ - A₁₅ : These pins are known as Port 2. It serves as I/O port. Each pin is bidirectional Input /Output with internal pull – up resistors. Besides the Input /Output, when external memory is interfaced, PORT 2 pins act as the higher-order address bus. (A8-A15) 	1M- PSEN 2M-Pin 21-28 1M Port 2 & 1M A8 - A15
Q.3	Attempt any THREE of the following:	12- Total Marks
a)	Develop Assembly Language program (ALP) to find the largest number in a block of 10 numbers stored at location 40H onwards in internal RAM.	4 M
Ans:	(NOTE: Marks to be given for any other correct logic used by students.) ORG 0000H MOV R1, #0AH ; Initialize Byte Counter MOV R0, #40H ; Initialize source pointer R0 to 40H DEC R1 ; decrement counter by one MOV 60H, @R0 ; Read First Byte UP: INC R0 ; Increment the contents of R0 MOV A, @R0 ; Read second number CJNE A, 60H, DN ; compare the first two numbers, if not equal go to DN AJMP LARGE ; else go to LARGE DN: JC LARGE ; check carry MOV 60H, A ; Store largest number to 60H LARGE: DJNZ R1, UP ; decrement the counter by one, if count ≠ 0, then go to UP END Largest No. is saved in memory 60H. Assume any location to store the result. OR MOV R1, #0AH ; initialize the counter MOV R0, #40H ; initialize the memory pointer DEC R1 ; decrement counter by one MOV A,@R0 ; load number in accumulator MOV B, A ; move that number to register B UP: INC R0 ; increment the memory pointer DAG ; else go to NEXT MOV B, A ; else go to NEXT <tr< th=""><th>4M for correc t progr am</th></tr<>	4M for correc t progr am

b)	Sketch the internal memory organization in 8051.	4 M
Ans:	Daigram: Byte Address Bit address Byte Address Bit address Byte Address Bit address TFh General purpose RAM area. 80 bytes 30h Internal Memory 2Eh $\overline{77}$ $\overline{78}$ 2Dh $\overline{67}$ $\overline{68}$ 2Ch $\overline{57}$ $\overline{50}$ 2Dh $\overline{17}$ $\overline{10}$ 2Bh $\overline{17}$ $\overline{18}$ 2Dh $\overline{17}$ $\overline{18}$ 2Dh $\overline{07}$ $\overline{88}$ $2Dh$ $\overline{67}$ $\overline{68}$ $2Dh$ $\overline{77}$ $\overline{38}$ $2Dh$ $\overline{17}$ $\overline{18}$ $2Dh$ $\overline{67}$ $2Dh$ $\overline{67}$	4M for neat Sketo h wit label
c) Ans:	 Explain processes of interrupt enabling and disabling in 8051. Interrupts are the events that temporarily suspend the main program, pass the control to the external sources and execute their task. It then passes the control to the main program where it had left off.8051 has 5 interrupt signals, i.e. INTO, TFO, INT1, TF1, RI/TI. Each interrupt can be enabled or disabled by setting bits of the IE register and the whole interrupt system can be disabled by clearing the EA bit of the same register. IE (Interrupt Enable) Register: 	4M 2M form t
	This register is responsible for enabling and disabling the interrupt. EA bit is set to 1 for enabling interrupts and set to 0 for disabling the interrupts. Its bit sequence and their meanings are shown in the following figure. EA _ _ ES ET1 EX1 ET0 EX0	

	EA	IE.7	It disables all interrupts. When EA = 0 no interrupt will be acknowledged and EA = 1 enables the interrupt individually.	bit
	-	IE.6	Reserved for future use.	
	-	IE.5	Reserved for future use.	
	ES	IE.4	Enables/disables serial port interrupt.	
	ET1	IE.3	Enables/disables timer1 overflow interrupt.	
	EX1	IE.2	Enables/disables external interrupt1.	
	ET0	IE.1	Enables/disables timer0 overflow interrupt.	
	EX0	IE.0	Enables/disables external interrupt0.	
	Explain		g instructions of 8051.	
d)	(i)	ADDO		4 M
	(ii)	L CA		
Ans:	(i)		C: The ADDC instruction adds a byte value and the value of the carry flag to	2M
			cumulator. The results of the addition are stored back in the accumulator.	each
		Severa	al of the flag registers are affected.	instr
	ADDC			ction
	Function		•	
	-		, source byte	
	Flags aff	ected: O	V,AC,CY	
	Descripti	on: ADI	DC simultaneously adds the byte variable indicated, the carry flag and the	
	Accumul	ator con	tents, leaving the result in the Accumulator ($A = A + byte + CY$). The carry and	
	auxiliary	-carry or	bit flags are set, respectively. If $CY = 1$ prior to this instruction, CY is also	
	added to	A.		
	Addressi	ng mode	s supported for ADDC instruction :	
		-	e: ADDC A,#data	
			ADDC A, Rn	
		U	DDC A, address	
	• K (ii)	LCAI	ndirect: ADDC A, @Ri	
			all, Transfers control to a subroutine	
		-	l6 bit addr	
	Flags aff			
	_		: 3 byte(1 byte is opcode and other two bytes are the 16 bit address of the	
	target sul			
	e	· · · · · ·	s instruction is used to transfers control to a subroutine To reach the target	
	address i	n the 64	Kbytes maximum ROM space of the 8051, LCALL instruction is used. For ne, the PC register (which has the address of the instruction after the LCALL)	
	_		he stack, and the stack pointer (SP) is incremented by 2. Then the program	
			with the new address and control is transferred to the subroutine.	

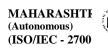
Q.4		Attempt an	ny THREE	of the follo	wing :					12 Marks
	a)	Draw the f	<u>format</u> of T	CON regist	ter of 8051	and describ	be the func	tion of eacl	n bit of it.	4 M
	Ans:	TCON: TI	MER/COU	NTER CO	NTROL R	EGISTER.	BIT ADDF	RESSABLE		2M
		TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	forma t
						hardware w			1	
		Overflows. Service rou	•	hardware as	s processor	vectors to the	ne interrupt			27.6
				run control ON/OFF.	bit. Set/cle	ared by soft	ware to turn	n Timer/Cou	inter1	2M Functi
						nardware wh)	on of each
			•		1	vectors to the vector soft			inter 0	bit
				Interrupt 1				External Inte	rrupt edge is	
			•		-	is processed cleared by s		specify		
			e/low level t	• 1		•		specify		
						Set by hardw				
						when interru cleared by s		ssea.		
						nal Interrupt				
	b)	Describe se	erial comm	unication in	n 8051. Ex	plain the us	e of SCON	register.		4 M
	Ans:							rough RXD	and TXD pin	2M
		-				ommunicatio	on.			mode
			ata Mode-0	•	,	register and	the data tra	nsmission v	vorks	descri
				-		0			ismitted through	ption in
		frequency f	fosc /12, whi	ich is conne	ected to the		cuitry for sy	-	oulses of on. The shift	short
				-		scillator frec de)(baud ra	- •	ble)		(1⁄2
									ver Transmitter	mark for
					-	h TXD or re		-		each
				•	•	,			d first), and a ecial function	mode)
		e	ON. The ba			_				&
				-	-	d rate is fix	-		voniona hite	2M
					U		U		various bits are B8 or RB8)bit	forma t with
				-					an be assigned	functi
		the value '0	' or '1'. For e	example, if	the information	tion of parit	y is to be tr	ansmitted, t	he parity bit (P)	on
		in PSW cou	uld be move	d into TB8.	On reception	on of the data	a, the 9 th b	it goes into	RB8 in 'SCON',	

	4. Serial I In this mo a start bit Mode-3 is mode-1).		e-3 - Multi p are transmitt), 8 data bits node-2, exce	ted through s (LSB first) ept the fact tl	TXD or rec), a program	ceived throu, nmable 9 th	igh RXD.T bit and a s	stop bit (usu	ually '1').	
	$f \text{ baud} = (2^{S})$	2 ^{SMOD} /32) * (SM1	(fosc/ 12 (25 SM2	56-TH1))	TB8	RB8	TI	RI		
	SM1 SCC SM0 SM1 0 0 Serial 0 1 Serial 1 0 Serial 1 1 Serial SM2 SCC REN SCC TB8 SCC TB8 SCC TI SCON stop Bit in	l Mode 0 l Mode 1, 8-1 l Mode 2 l Mode 3 ON.5 Used fo ON.4 Set/ clo ON.3 – the 9 ON.2– in mo J.1 Transmit	port mode s -bit data, 1 s for multiprod leared by sof 9th bit that w ode 2/3 it is t interrupt fla	specifier. stop bit, 1 sta ocessor comr oftware to en will be transi the 9th bit th lag. Set by h	munication hable/ disabl mitted in math that was reco hardware at t	ode 2/3 set/o eived . the beginnin	clear by so	oftware.		
		ime in mode								
c)		terfacing of	16×2 LCI	D with 8051	and state	the functio	n of EN a	nd RS of L	CD	4M
Ans:	Diagram	:								2M for diagr m
										2Mar ks for

d)	RS: RS is the register select pin. We need to set it to 1, if we are sending some data to be displayed on LCD. And we will set it to 0 if we are sending some command instructions during the initializing sequence like clear the screen etc. EN: The enable pin is used by the LCD to latch information presented to its data pins. When data is supplied to the data pins, a high-to-low pulse must be a minimum of 450ns wide.	functi on of two pins(1Mar k each pin functi on)
	(i) EQU (ii) ORG	4M
Ans	 (i) EQU: Equate It is used to define constant without occupying a memory location. Syntax: Label EQU Numeric value By means of this directive, a numeric value is replaced by a symbol. For e.g. MAXIMUM EQU 99 After this directive every appearance of the label MAXIMUM in the program, the assembler will interpret as number 99 (MAXIMUM=99). (ii) ORG:-ORG stands for Origin Syntax: ORG Address The ORG directive is used to indicate the beginning of the address. The origin directive tells the 	2 Marks for each directi ve
	assembler where to load instructions and data into memory. It changes the program counter to the value specified by the expression in the operand field. The number thatcomes after ORG can be either in hex or in decimal. If the number is notfollowed by H, it is decimal and the assembler will convert it to hex.	
e)	State the alternate pin functions of port 3 of 8051.	4M

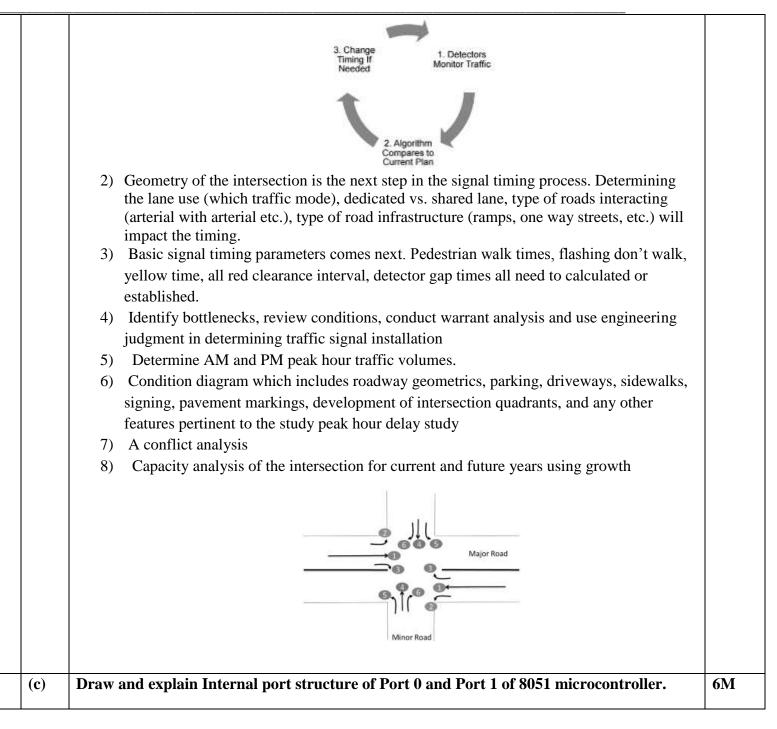
MAHARASHTF (Autonomous) (ISO/IEC - 2700

	Ans:				4
		Pin	Name	Alternate Function	Marks for 8
		P3.0	RXD	Serial input line	pins(1/2
		P3.1	TXD	Serial output line	mark
		P3.2	INTO	External interrupt 0	for each
		P3.3	INT1	External interrupt 1	pin functi
		P3.4	TO	Timer0 external input	on)
		P3.5	T1	Timer1 external input	
		P3.6	WR	External data memory write strobe	
		P3.7	RD	External data memory read strobe	
Q.5		Attempt any TWO of the follo	wing		12 Total
	(a)	Explain with sketch the interfa	acing of 4 ×4 matrix	keypad with 8051 microcontroller.	Marks 6M
	Ans:	Port 1 D0 D1 D2 D3		a a a a a a a a a a a a a a a a a a a	sketch -3M
		are connected to an output port a	and the columns are co		Expla nation – 3M
			_	all rows by providing 0 to the output om the columns is D3-D0=1111, no key	
		has been pressed and the proces	s continues until a key	press is detected. However, if one of the	


tified)

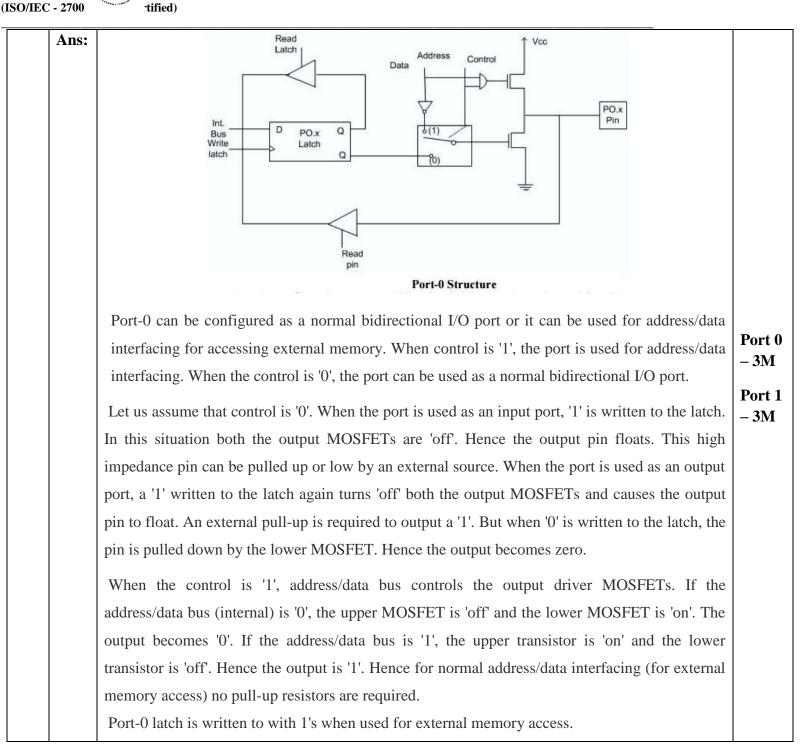
		bits has a zero, this means that a key press has occurred. For example, if D3-D0=1101,	
		ns that a key in the D1 column has been pressed.	
	After a k	tey press is detected, the microcontroller will go through the process of identifying the	
	key. Star	ting with the top row, the microcontroller grounds it by providing a low to row D0	
	only; the	en it reads the columns.	
	If the dat	ta read is all 1s, no key in that row is activated and the process is moved to the next row.	
	It ground	Is the next row, reads the columns, and checks for any zero. This process continues until	
	the row i	s identified. After identification of the row in which the key has been pressed, the next	
	task is to	find out which column the pressed key belongs to.	
	Differen	tiate between	
(b)	(i)	Harvard and Von-neuman architecture	6M
Ans:	(ii)	Microprocessor and Microcontroller	Von
Ans:	i) 1	Harvard Architecture and Von-neuman architecture	Nue
	Ē		ann
	Sr.N	To Von Neumann architecture Harvard architecture	Har
	1		rd 3 M
	3 4 3	Data Program Data Data	(any
		CPU and data Program () cpu () Vata	thre
		Address memory Memory Memory	poir
)
)
	2	The Van Neumann architecture uses single The Harvard architecture uses physically separate)
	2	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data.)
	2	The Van Neumann architecture uses single The Harvard architecture uses physically separate)
	2	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. Requires single bus for instructions and data Requires separate & dedicated buses for)
	3	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. Requires single bus for instructions and data Requires separate & dedicated buses for memories for instructions and data. Its design is simpler Its design is complicated Instructions and data have to be fetched in Instructions and data can be fetched)
	3	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. Requires single bus for instructions and data Requires separate & dedicated buses for memories for instructions and data. Its design is simpler Its design is complicated Instructions and data have to be fetched in sequential order limiting the operation Instructions and data can be fetched simultaneously as there is separate buses for)
	3	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. Requires single bus for instructions and data Requires separate & dedicated buses for memories for instructions and data. Its design is simpler Its design is complicated Instructions and data have to be fetched in Instructions and data can be fetched	
	3	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. Requires single bus for instructions and data Requires separate & dedicated buses for memories for instructions and data. Its design is simpler Its design is complicated Instructions and data have to be fetched in sequential order limiting the operation bandwidth. Instructions and data which increasing operation bandwidth. Program segments & memory blocks for data Vectors & pointers, variables program segments	
	2 3 4 5	The Van Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. Requires single bus for instructions and data Requires separate & dedicated buses for memories for instructions and data. Its design is simpler Its design is complicated Instructions and data have to be fetched in sequential order limiting the operation bandwidth. Instructions and data which increasing operation bandwidth.	

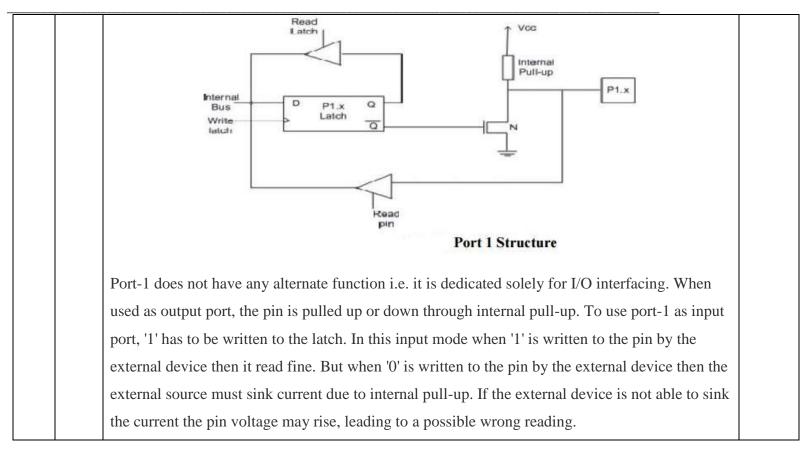
proces



	Sr. No	Parameter	Microprocessor	Microcontroller	sor , Micro				
	1.	No. of instructions used	Many instructions to read/ write data to/ from external memory.	Few instruction to read/ write data to/ from external memory	contro ller – 3M				
	2.	Memory	Do not have inbuilt RAM or ROM.	Inbuilt RAM /or ROM	(any three				
	3.	Registers	Microprocessor contains general purpose registers, Stack pointer register, Program counter register	Microcontroller contains general purpose registers, Stack pointer register, Program counter register additional to that it contains Special Function Registers (SFRs) for Timer, Interrupt and serial communication etc.)				
	4. 5.	Timer I/O ports	Do not have inbuilt Timer. I/O ports are not available requires extra device like 8155 or 8255.	Inbuilt Timer I/O ports are available					
	6.	Serial port	Do not have inbuilt serial port, requires extra devices like 8250 or 8251.	Inbuilt serial port					
	7.	Multifunction pins	Less Multifunction pins on IC.	Many multifunction pins on the IC					
	8.	Boolean Operation	Boolean operation is not possible directly.	Boolean Operation i.e. operation on individual bit is possible directly					
	9.	Applications	General purpose, Computers and Personal Uses.	Single purpose(dedicated application), Automobile companies, embedded systems, remote control devices.					
(c)	Develop an ALP to generate square wave of 3 KHz using 8051 microcontroller on port pin P2.3 (Assume X _{tal} freq ⁿ =12 MHz)								
Ans:	Ans: Crystal frequency= 12 MHz I/P clock = $(12*10^{6})/12= 1$ MHz $T_{in} = 1\mu$ sec For 3 kHz square wave $F_{out} = 3$ KHz $T_{out} = 1/(3X 10^{3}) = 0.3$ msec =333 μ sec So $T_{ON} = T_{OFF} = 333/2 = 166.5 \ \mu$ sec $N = T_{ON} / T_{in} = 166.5 \ \mu$ sec $/1 \ \mu$ sec = 166.5 167 $65535 - 167 + 1 = (65369)_{10} = (FB71)_{16}$ Program:-								
	MOV TMOD, # 01H ; Set timer 0 in Mode 1, i.e., 16 bit timer								

	1									
				; Load TL regis						
		MOV TH0, # 0FB H; load TH register with MSB of count								
	SETB TR0; start timer 0									
		L1: JNB TF0, L1 ; poll till timer roll over								
		CLR TR0 ; stop timer 0 CPL P2.3 ; complement port 2.3 line to get high or low CLR TF0 ; clear timer flag 0 SJMP L2 ; re-load timer with count as mode 1 is not auto reload								
Q.6		Attempt any TWO of the following:						12Tot al		
Q.0								al Mark		
	(a)		Praw interfacing of stepper motor with 8051 and write an ALP to rotate it in clockwise							
		direction.								
	Ans:	Diagram:						3M		
		Ť, tř								
			R An and an							
		8051 Microcontroller								
	1			Winding B	Winding C	Winding D	Clockwise			
			Winding A	Winding B	trinaing c	-	CIOCKWISE			
		Step no 1	Winding A	0	0	1				
		no 1	1	0	0	1				
		no	Winding A		_					
		no 1	1	0	0	1				
		no 1	1	0	0	1				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0				
		no 1 2 3	1 1 0	0 1 1	0 0 1	1 0 0		Progr		


	MOV A,#66H ;load step sequence BACK: MOV P1,A ;issue sequence to motor RR A ;rotate right clockwise ACALL DELAY ;wait SJMP BACK ;keep going DELAY MOV R2,#100 H1: MOV R3,#255	3M			
(b)	H2: DJNZ R3, H2 DJNZ R2, H1 RET (Other programs with similar logic can be given marks) Describe with sketches the procedure to troubleshoot the traffic light controller.	6M			
Ans:	 Describe with sketches the procedure to troubleshoot the traffic light controller. Considerations of Traffic Signal Traffic light may have sensors integrated to provide real time traffic information Based on the traffic information provided by the sensor, the duration of the green/Red LED light for each direction may vary so that the traffic for both the directions are roughly balanced. Time left for the green light should be displayed When the traffic light for one signal is green, then the traffic for the other directions should be red (with duration displayed in red) The red light will be switched to yellow when the timer value is 5 sec before switchin to red. 				
	 5) Violations happen when user expectancy is not met. A user like pedestrian does not expect to stand for more than a minute or two at a signal, when this user expectancy is not met, the pedestrian tries to venture out and violate the signal 6) The smooth movement of conflicting vehicles is determined by the availability of gaps in traffic. This is true for both pedestrians and vehicular traffic. Understanding of gaps is important for justifying the type of traffic control device, including a traffic signal. Points to consider for determining signal timings The signal operational parameters are reviewed and updated (if needed) on a regular basis to maximize the ability of the traffic control signal to satisfy current traffic demands 				


BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHTI (Autonomous)

