11920 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- (a) Define Conductance and Susceptance related to AC circuit and state their units.
- (b) Draw power triangle for R-L series circuit. Write equation of power in rectangular form.
- (c) Express an instantaneous value of an alternating current varying sinusoidally in terms of its maximum value, frequency and time.
- (d) State relationship between line and phase values of voltage and current in balanced delta connection.
- (e) Distinguish clearly between loop and mesh.
- (f) State the value of internal resistance of (i) Ideal Voltage Source and (ii) Ideal Current Source.
- (g) State Norton's Theorem.

[1 of 4] P.T.O.

22324 [2 of 4]

2. Attempt any THREE of the following:

- (a) With neat diagram, explain the phasor representation of sinusoidal quantity.
- (b) For a parallel circuit consisting of an inductive branch (RL) in parallel with a capacitive branch (RC), draw phasor diagram and derive equation for resonant frequency.
- (c) With the help of neat phasor diagram, derive the relationship between line and phase values of voltage in balanced star connection.
- (d) State the equivalent delta connection for star connection of three resistances R_1 , R_2 & R_2 , with proper equations.

3. Attempt any THREE of the following:

12

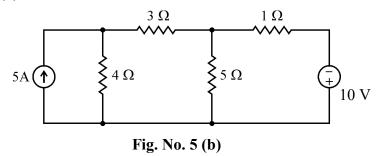
12

- (a) For series R-L-C circuit, draw neat circuit diagram. State the conditions for RLC series ckt. Draw phasor diagram and voltage triangle impedance triangle for any 1 condition.
- (b) State any four properties of Parallel Resonance.
- (c) With neat labelled diagram, explain unbalanced star connected load.
- (d) With neat circuit diagram, explain how to convert a practical voltage source into an equivalent practical current source.
- (e) Explain the concept of "duality" in electric circuit with one example.

4. Attempt any THREE of the following:

12

- (a) A series R-L-C circuit has $R = 5\Omega$, L = 10 mH and $C = 15 \mu F$. Calculate :
 - (i) Resonant frequency
 - (ii) Q-factor of the circuit
 - (iii) Bandwidth
 - (iv) Voltage magnification.
- (b) Explain the "Current Magnification" in parallel resonant circuit consisting of inductive branch (RL) in parallel with a pure capacitor (C). Derive equation for it.


22324 [3 of 4]

- (c) Draw waveform of three-phase voltages. Draw phasor diagram for these voltages. Write equations for instantaneous values of these voltages. Express these voltages in polar form.
- (d) State and explain "Reciprocity theorem".

5. Attempt any TWO of the following:

12

- (a) A coil having resistance of 5 Ω and an inductance of 0.2 H is connected in parallel with a series combination of 10 Ω resistor and 80 μ F capacitor. If supply voltage is 230 V, 50 Hz, determine :
 - (i) Total circuit impedance.
 - (ii) Total current taken by the circuit.
 - (iii) Power factor of the circuit.
 - (iv) Branch currents.
 - (v) Power consumed by the circuit.
- (b) Using mesh analysis, find current in 5 Ω resistor in the network shown in Fig. 5(b).

(c) Find the current in 5 Ω resistor in the network shown in Fig. 5(c) by using Thevenin's theorem.

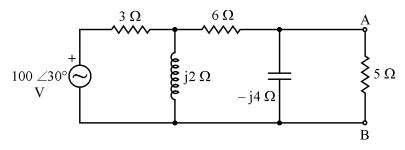


Fig. No. 5 (c)

P.T.O.

6. Attempt any TWO of the following:

- (a) For a series R-L-C circuit consisting of R = 5 Ω , L = 0.01 H and C = 10 μ F supplied with 230 V, 50 Hz supply, determine :
 - (i) Circuit impedance
 - (ii) Circuit current
 - (iii) Circuit power factor
 - (iv) Active power
 - (v) Reactive power
 - (vi) Apparent power
- (b) A star connected capacitive load is supplied from 3 ϕ , 415 V, 50 Hz supply. If the line current is 15 A and total 3 ϕ power taken from supply is 30 kW, find:
 - (i) Power factor
 - (ii) Resistance in cash phase
 - (iii) Capacitance in each phase.
- (c) Determine the voltage 'V' across 5 Ω resistor in network shown in Fig. 6(c) using superpositon theorem.

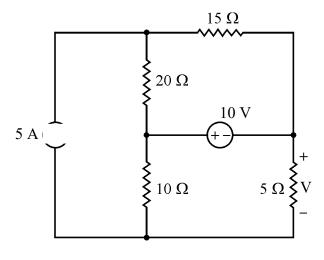


Fig. No. 6 (c)