

SUMMER- 2019 Examinations Model Answer

Page 1 of 23

Important suggestions to examiners:

Subject Code: 22420

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following 10 Marks
a)	Define active and passive transducers.
Ans:	1. Active Transducer: (1 Mark)
	• These transducers do not need any external source of power for their
	operation. Therefore, they are also called as self-generating type transducers.
	• The active transducer are self-generating devices which operate under the
	energy conversion principle.
	2. Passive Transducer: (1 Mark)
	• These transducers need external source of power for their operation. So they are
	not self-generating type transducers.
b)	List any four units of pressure.
Ans:	(Any four units expected: 1/2 marks each)
	The following are units of Pressure
	1. Pascals (Pa or N/m2) – N stands for <i>newton</i> which is SI unit of pressure
	2. Psi - Pounds per square inch (PSI)
	3. Bar – 10 ⁵ Pascals
	4. mm Hg-millimeters of Mercury 1mm of Hg = 1 Torr

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2019 Examinations

Subject Co	de: 22420
------------	-----------

Model Answer

Page 2 of 23

	5. Torr – 133.32 Pa
	6. cm H2O – 1 cmH2O = 98.068 Pa
c)	Define laminar and turbulent flow.
Ans:	Laminar flow: (1 Mark)
	 Laminar flow occurs when the fluid flows in infinitesimal parallel layers with no disruption between them. For laminar flow Reynolds number Re < 2300 OR
	2. The flow in which fluid flows smoothly such that fluid layers are parallel to each other
	OR I I I I I I I I I I I I I I I I I I I
	No streamlines intersect each other, such type of flow is known as laminar flow.
	OR
	4. When all the molecules of flow are parallel to each other, it is called Laminar flow.
	Turbulent flow: (1 Mark)
	1. Turbulent flow occurs when the fluid does not flow in parallel layers, the lateral
	mixing is very high, and there is a disruption between the layers. Re > 4000
	OR
	2. When all the molecules of flow are scattered without fixed position it is called Turbulent flow.
	OR
	3. The flow in which fluid flows in zig-zag manner and fluctuate irregularly in such a way that its velocity changes irregularly, such type of flow is known as turbulent flow.
d)	List any two non-contact type level measurement methods.
Ans:	(Any Two types expected: 1 mark each)
	• The following are non-contact type level measurement methods
	1. Ultrasonic type level measurement
	2. Nuclear radiation type level measurement
	3. Radar type level measurement
	4. Capacitive level transducer.
	5. Load cell type level transducer.

SUMMER- 2019 Examinations Model Answer

Page 3 of 23

Advantages of ultrasonic level measurement: 1. Offer no obstruction to the flow 2. o/p is insensitive to variation in viscosity, density and temperature 3. No moving parts 4. Linear relationship between o/p and i/p 5. Used for bidirectional flow 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ann: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR	e)	State any two advantages of ultrasonic flow meters.
1. Offer no obstruction to the flow 2. o/p is insensitive to variation in viscosity, density and temperature 3. No moving parts 4. Linear relationship between o/p and i/p 5. Used for bidirectional flow 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect: is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass acrea a junction between two materials. g) What is Pt-100? Ans: Pt-100? A platinum resistance temperature detector (RTD) Pt100 is a device with a typical	Ans:	(Any Two points expected: 1 marks each)
 2. o/p is insensitive to variation in viscosity, density and temperature 3. No moving parts 4. Linear relationship between o/p and i/p 5. Used for bidirectional flow 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betwee two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass acro a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical 		Advantages of ultrasonic level measurement:
 3. No moving parts 4. Linear relationship between o/p and i/p 5. Used for bidirectional flow 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass acro a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical 		1. Offer no obstruction to the flow
 4. Linear relationship between o/p and i/p 5. Used for bidirectional flow 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass acro a junction between two materials. g) What is Pt-100? Ans: Pt-100;- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical 		2. o/p is insensitive to variation in viscosity, density and temperature
5. Used for bidirectional flow 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass acro a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		3. No moving parts
 6. Excellent dynamic response 7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mark) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical 		4. Linear relationship between o/p and i/p
7. Good accuracy +-2% 8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mar) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		5. Used for bidirectional flow
8. o/p is electrical 9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mar) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		6. Excellent dynamic response
9. It is used as non-contact method of flow measurement. f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mar) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		7. Good accuracy +-2%
f) State seeback and peltier effect. Ans: See beck Effect:- (1 Mar) When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		8. o/p is electrical
When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		
When a pair of dissimilar metals are joined at one end, and there is a temperature difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- A platinum resistance temperature detector (RTD) Pt100 is a device with a typical	f)	State seeback and peltier effect.
difference between the joined ends and the open ends, thermal emf is generated, which can be measured in the open ends. Peltier Effect:- (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- A platinum resistance temperature detector (RTD) Pt100 is a device with a typical	Ans:	See beck Effect: (1 Mark)
 which can be measured in the open ends. <u>Peltier Effect:-</u> (1 Mark) The Peltier effect is a temperature difference created by applying a voltage betweet two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical 		When a pair of dissimilar metals are joined at one end, and there is a temperature
 Peltier Effect:		difference between the joined ends and the open ends, thermal emf is generated,
 The Peltier effect is a temperature difference created by applying a voltage between two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. What is Pt-100? Ans: Pt-100:		which can be measured in the open ends.
two electrodes connected to a sample of semiconductor material. OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:		<u>Peltier Effect:-</u> (1 Mark)
OR The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:		The Peltier effect is a temperature difference created by applying a voltage between
The Peltier effect: Heat is given out or absorbed when an electric current pass across a junction between two materials. g) What is Pt-100? Ans: Pt-100:		two electrodes connected to a sample of semiconductor material.
a junction between two materials. g) What is Pt-100? Ans: Pt-100:- A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		OR
g) What is Pt-100? Ans: Pt-100: (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		The Peltier effect: Heat is given out or absorbed when an electric current pass across
Ans: Pt-100:- (2 Marks) A platinum resistance temperature detector (RTD) Pt100 is a device with a typical		a junction between two materials.
A platinum resistance temperature detector (RTD) Pt100 is a device with a typical	g)	What is Pt-100?
	U.	
resistance of 100 Ω at 0°C (it is called Pt100).		A platinum resistance temperature detector (RTD) Pt100 is a device with a typical
		resistance of 100 Ω at 0°C (it is called Pt100).

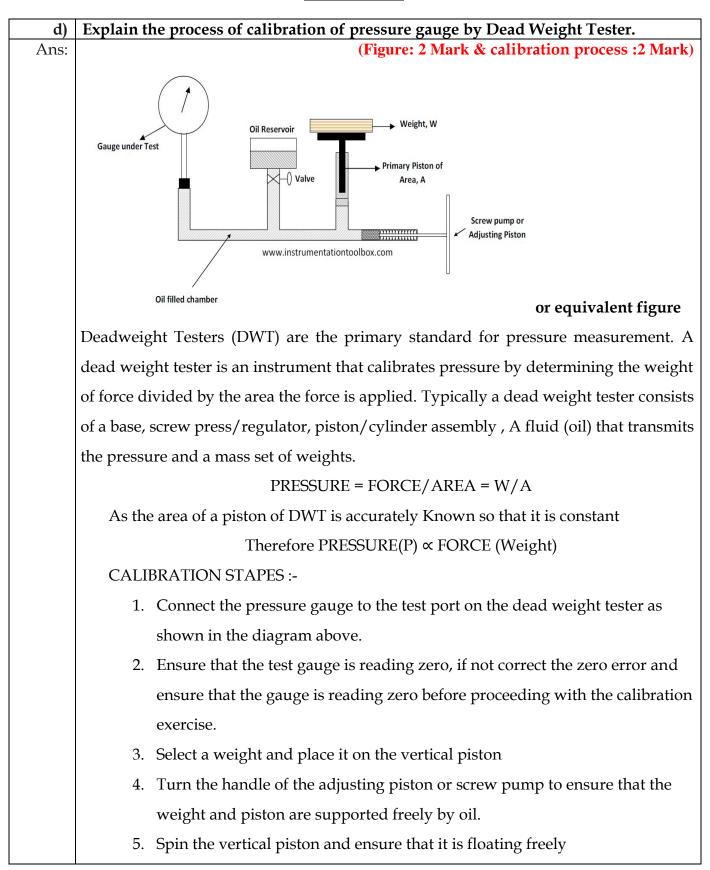
Subject Code: 22420

Model Answer

Page 4 of 23

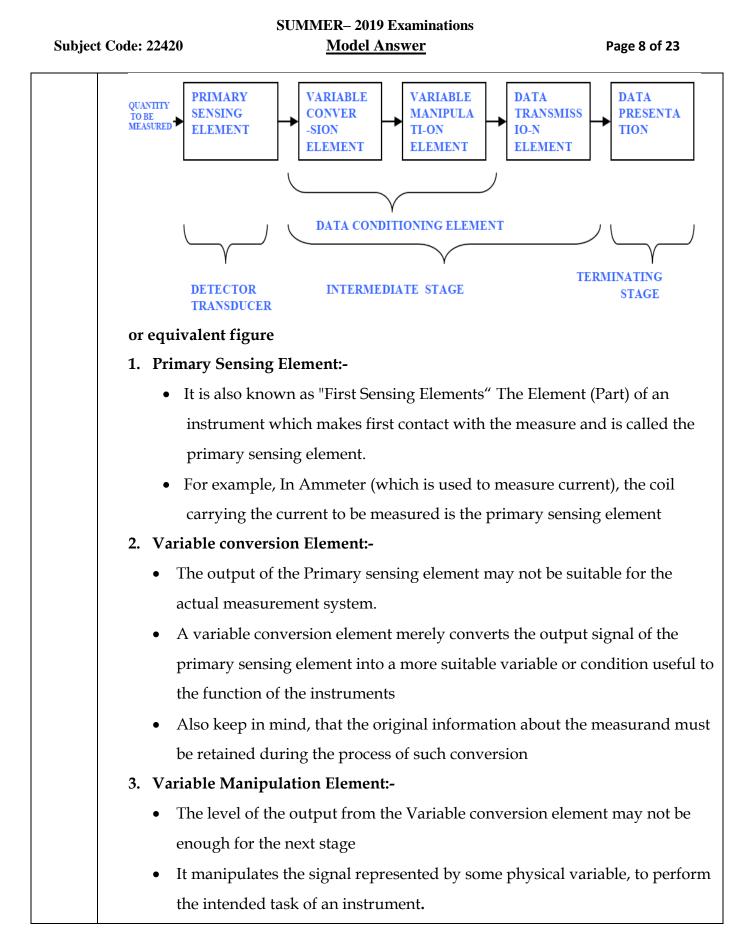
	It changes resistance value as its temperature changes following a positive slope
	(resistance increases when temperature is increasing).
Q. 2	Attempt any THREE of the following 12 Marks
a)	State the selection criteria for transducers (any eight points).
Ans:	(Any Eight points expected: 1/2 marks each)
	 Operating range Operating principle Sensitivity Accuracy Frequency response and resonant frequency Errors Environmental compatibility Usage and ruggedness. Electrical aspect. Stability and Reliability Loading effect
	12. Static characteristics
	13. Noise immunity
b)	Draw constructional details of C-types Bourdon tube and explain its working
	Constructional details of C-types Bourdon tube : (Figure: 2 Mark & Explanation :2 Mark)
Ans:	Scale Bourdon Ube Finion Finion Finion Finion Five Segment lever Five Socket Or equivalent figure
	Explanation:-
	1. The Bourdon tubes are made out of an elliptically sectioned flat tube bent in
	such a way as to produce the above mentioned shapes.
	2. One end of the tube is sealed or closed and physically held.
	3. Other end of tube is held fixed at one end (the end connected to the pressure source)

SUMMER- 2019 Examinations Model Answer

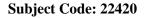

Page 5 of 23

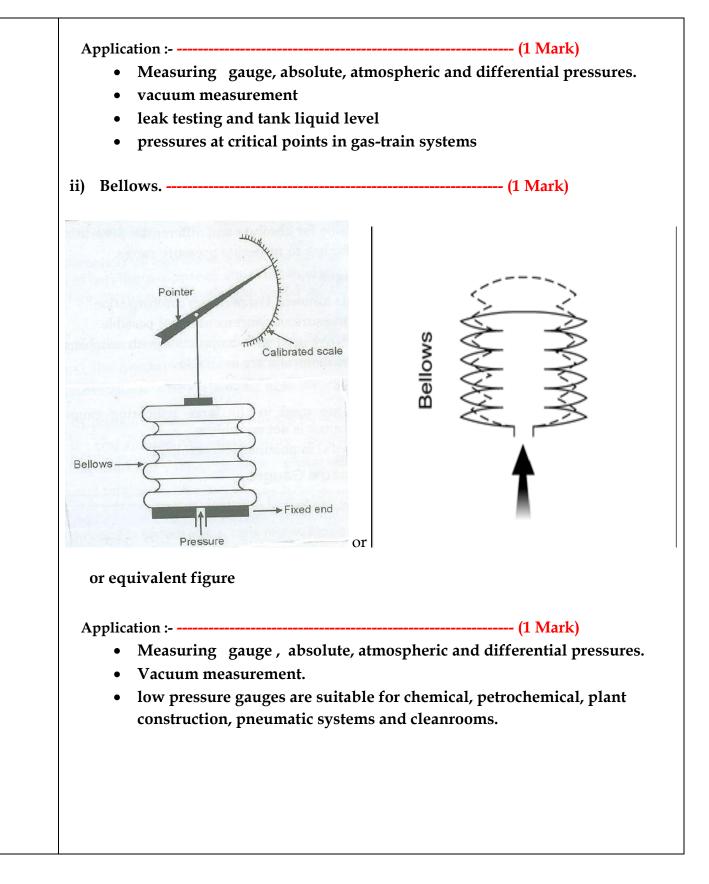
	4. Whose pressure is to be measured enters the tube, the tube tends to straighten
	out on account of the pressure. 5. This causes the movement of the free end which is measured.
	 A pointer is mounted on the shaft. The needle moves over a circular scale that
	indicates the pressure. The position of the needle is determined by a balance
	between the Bourdon tube developed torque acting on the shaft and the torque
	due to the shaft mounted spring that opposes its movement.
	7. Bourdon tubes normally measure gauge pressure.
	8. The materials used for Bourdon tubes are brass, phosphor bronze, beryllium
	<u>copper, and steel</u>
c)	What is piezo electric effect? Name two piezo electric materials.
Ans:	Piezoelectric Effect: (2 Marks)
	When pressure or force is applied on piezoelectric crystals such as quartz crystal then
	an electric charge is generated across that crystal.
	OR Piezoelectric Effect is the ability of cortain materials to concrete an electric charge in
	Piezoelectric Effect is the ability of certain materials to generate an electric charge in response to applied mechanical stress.
	Piezoelectric Materials: - (Any Two Material expected: 1 marks each)
	()
	1. Barium Titanate.
	2. Rochelle salts.
	3. Quartz crystal.
	4. Topaz
	5. Tourmaline
	6. lead titanate
	7. lead zirconate titanate
	8. lithium sulphate

SUMMER- 2019 Examinations Model Answer


Page 6 of 23

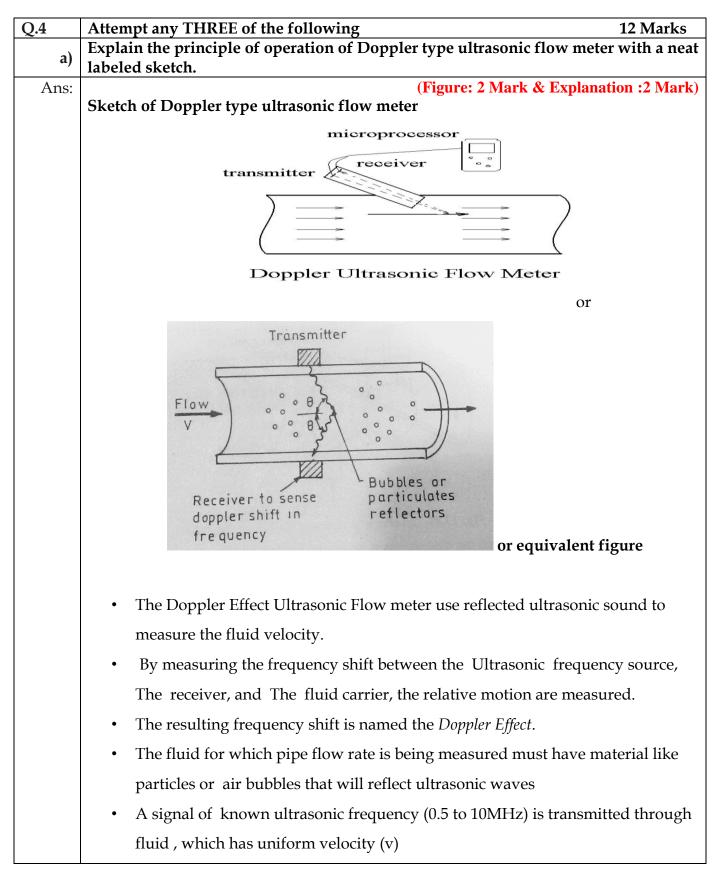
Subject	t Code: 224		IER– 2019 Examinations <u>Model Answer</u>	Page 7 of 23
	6.	At steady state cond	lition record the gauge readin	g and weight
	7.	increasing weights u	until the full range or maximu	m pressure is applied to
		the gauge and then	decreasing weights until the g	auge reads zero pressure.
	8.	Calculate the error	at each gauge reading and ens	sure that it is within the
		acceptable accuracy		
Q.3	Attempt	any THREE of the fo	llowing	12 Marks
a)	Compare	,	enturi tube with reference to:	(i) Working principle (ii)
Ans:				(Each Point: 1 Mark)
	S.No	Points	Venturi Flow Meter	Orifice Plate Meter
	1	Working principle	Works on venturi effect. The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a constricted section of pipe.	When fluid passes through orifice, there is large drop in pressure that is indicative of flow rate
	2	Construction	It has The venturi meter has a converging conical inlet, a cylindrical throat and a diverging recovery cone works on venturi effect:	An orifice meter is essentially a cylindrical tube that contains a plate with a thin hole in the middle of it.
	3	cost	Expensive, carefully fabricated, purchase from proper manufacture	Cheap & easy to install. Homemade orifice plate possible
	4	Pressure loss	Low	High
b)		• 0	ram of instrumentation system	
Ans:	6	Measured quantity Quantity Data transmission element	Primary sensing element Data presentation element Presented data Ot Diagram of Instrumentation	Variable manipulation element
			diagram of instrumentation	




Subjec	t Code: 2242	SUMMER– 2019 Examinations 20 <u>Model Answer</u>	Page 9 of 23
	4. Da	ta Transmission Element:-	
	•	If the elements of the system are physically separated, it is a	necessary to
		transmit the data from one stage to the other. So we need the	nis Data
		Transmission element	
	5. Da	ta presentation Element:	
	•	It performs the translation function, such as present the dat	a in a suitable
		form so that it is easily understood by the observer and for	this the Data
		Presentation Element is used	
c)		e example of each type: (i) Active transducer (ii) Primary transducer. (iv) Digital transducer.	v transducer. (iii)
Ans:		(Ea	ch Point: 1 Mark)
	(i)	Active transducer:-Thermocouple, piezoelectric, photovolta	aic cell
	(ii)	Primary transducer:- Bourdon tube, bellows,	
	(iii)	Electrical transducer.:- LVDT,RVDT, Hall effect, strain gau	ge, ultrasonic
		meter, optical pyrometer, radiation pyrometer	
	(iv)	Digital transducer:- Linear Encoder, digital taco generator	
d)	Draw the Bellows.	following and write one application of each: (i) Well typ	pe manometer(ii)
Ans:	(i) Well	type manometer:	(1 Mark)
	$\delta h \downarrow_v^{\times}$ or equ	ivalent figure	$\begin{array}{c c} \hline \\ \hline \\ h_1 \\ \downarrow \\ \downarrow \\ \hline \\ Y \end{array} X$

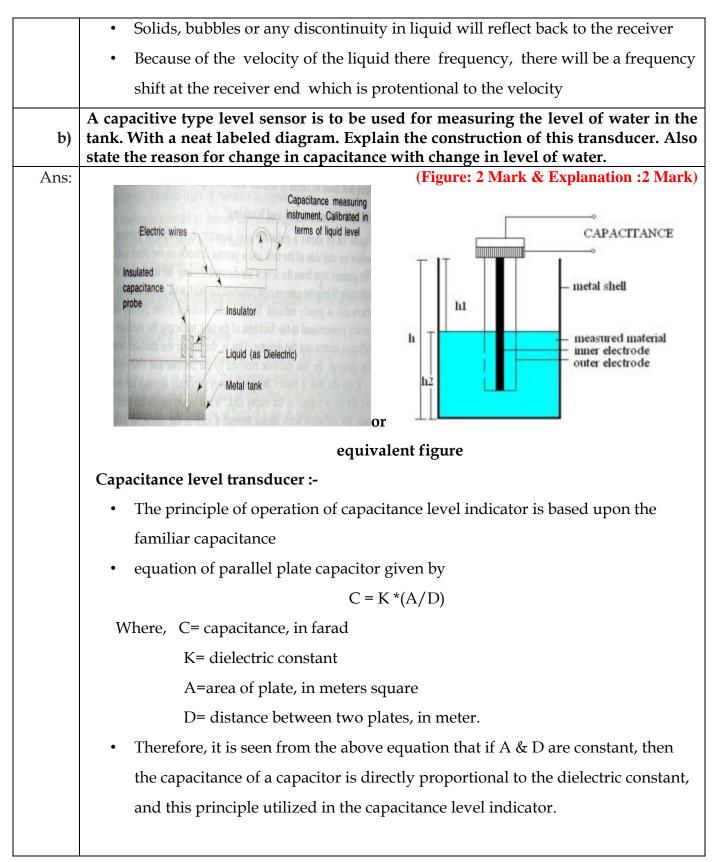
Model Answer

Page 10 of 23



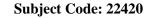
Subject Code: 22420

Model Answer

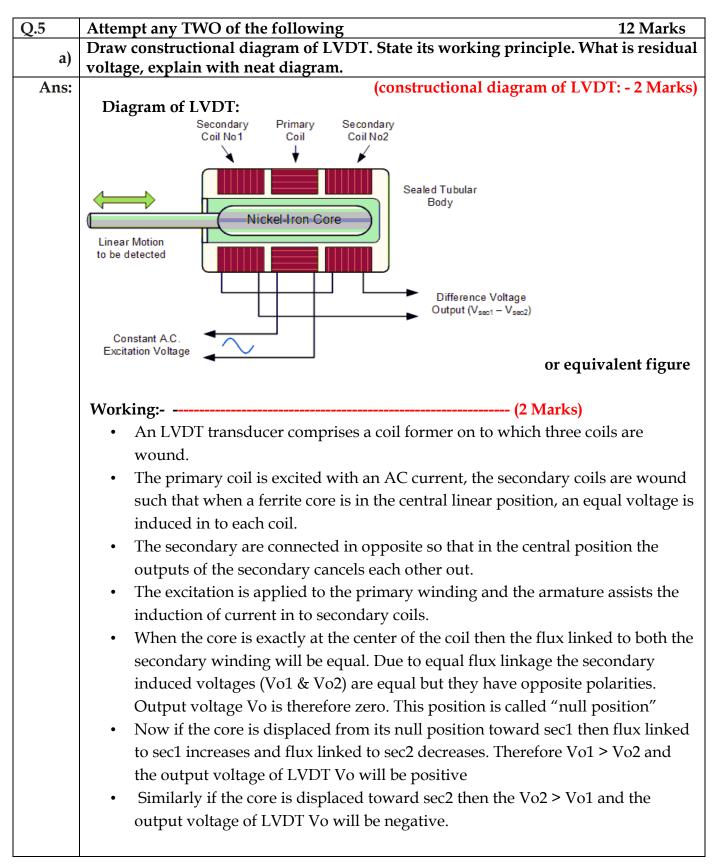

Page 11 of 23

SUMMER– 2019 Examinations Model Answer

Page 12 of 23

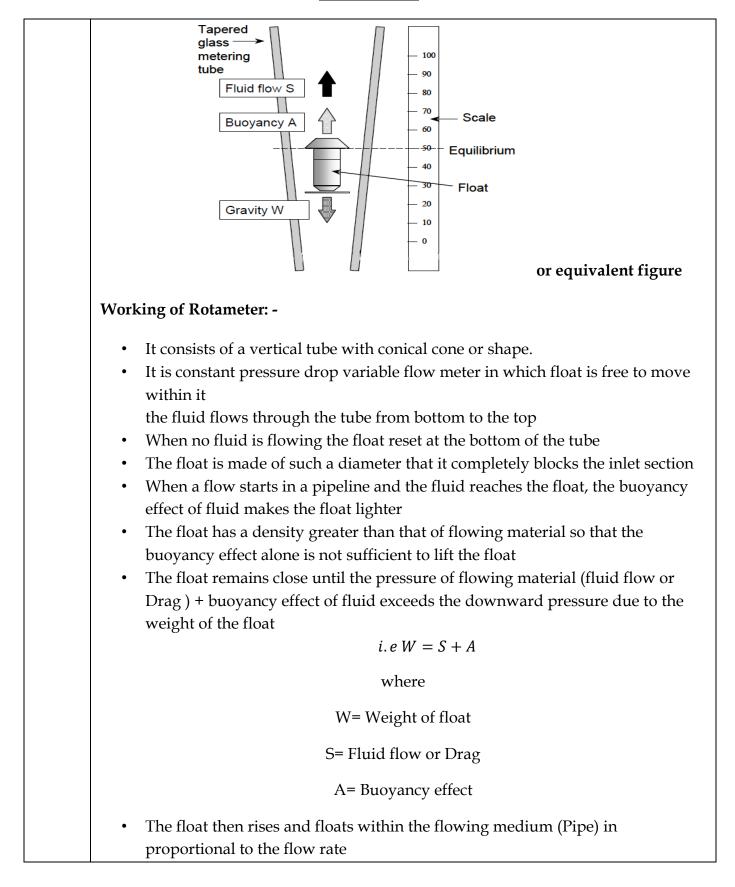


Subjec	t Code: 2	2420	SUM	MER– 2019 Examinations <u>Model Answer</u>	Page 13 of 23
	Const	tructi	on & working:-		
	•]	Fig. s	hows a capacitan	ce type liquid level indi	cator. It consist of an insulated
		capad	citance probe (wh	ich is a metal electrode)	firmly fixed near and parallel to
	1	the m	netal wall of the ta	ank.	
	•]	If the	liquid in the tank	k is non-conductive , the	capacitance probe and the tank
	,	wall	form the plates of	a parallel plate capacito	or and liquid in between them
		acts a	as the dielectric.		-
	•]	If the	liquid is conduc	tive the capacitance pro	be and liquid form the plates of
			_	nsulation of the probe a	
			-	-	with the probe and the tank wall,
		-		terms of the level of the	-
				id in the tank rises, the c	•
			-		apacitance also decreases.
			_		-
			0 1		displayed on the indicator
	(calibi	rated in terms of l	iquid level	
c)					perature coefficient (ii) linearity
Ans:	(iii) ter	npera	ature (iv) range a	nd cost	(Each Point: 1 Mark)
1110.				DED	
	Sr	:.No.	Points	RTD	Thermistor
		1	temperature	Positive temperature	PTC and NTC both types are
			coefficient	coefficient of resistance.	available
		2	linearity	It has linear temperature versus	It has nonlinear temperature versus resistance curve.
				resistance curve.	versus resistance curve.
		3	temperature	Used in medium to	Used in low to medium
				high Temperature range: -100 C to 650 C.	Temperature range: -50 C to 300 C
		4	range and cost	Temperature range: -	Temperature range: -50 C to 300 C
				100 C to 650 C. Cost is high	They are cheaper as compared to RTD
					KID


Subject Code: 22420 **Model Answer** Page 14 of 23 State any two advantages and disadvantages of electromagnetic flow meter. d) Advantages of Magnetic Flowmeter: - -Ans: (2 Marks) 1. It can handle slurries and greasy materials. 2. It can handle corrosive fluids. 3. It has very low pressure drop. 4. It is totally obstruction less. 5. It is available in large pipe sizes and capacity as well as in sever construction materials. 6. It is capable of handling low and very high-volume flow 7. It can be used as bidirectional meter. Disadvantage of Magnetic Flowmeter: - ---(2 Marks) 1. It is relatively expensive. 2. It works only with fluids which are adequate electrical conductors. 3. It is relatively heavy, especially in larger sizes. 4. It must be full at all times. 5. It must be explosion proof when installed in hazardous electrical areas Suggest a suitable level transducer for following application: (i) Level control of liquid, powders and fine grained solids within mining e) (ii) Chemical processing and food industries (iii) Tank level monitoring in chemical, water treatment (iv) Oil level in transformer. (Each Point: 1 Mark) Ans: i. Level control of liquid, powders and fine grained solids within mining:-Capacitive Transducer, Radar level (microwave) Transducer, laser beam type ii. Chemical processing and food industries:-Capacitive Transducer, Radar level meter iii. Tank level monitoring in chemical, water treatment:-Ultrasonic level transducer, load cell type iv. Oil level in transformer: sight Glass, optical sensor (LDR), Float type level transducer

Model Answer

Page 15 of 23

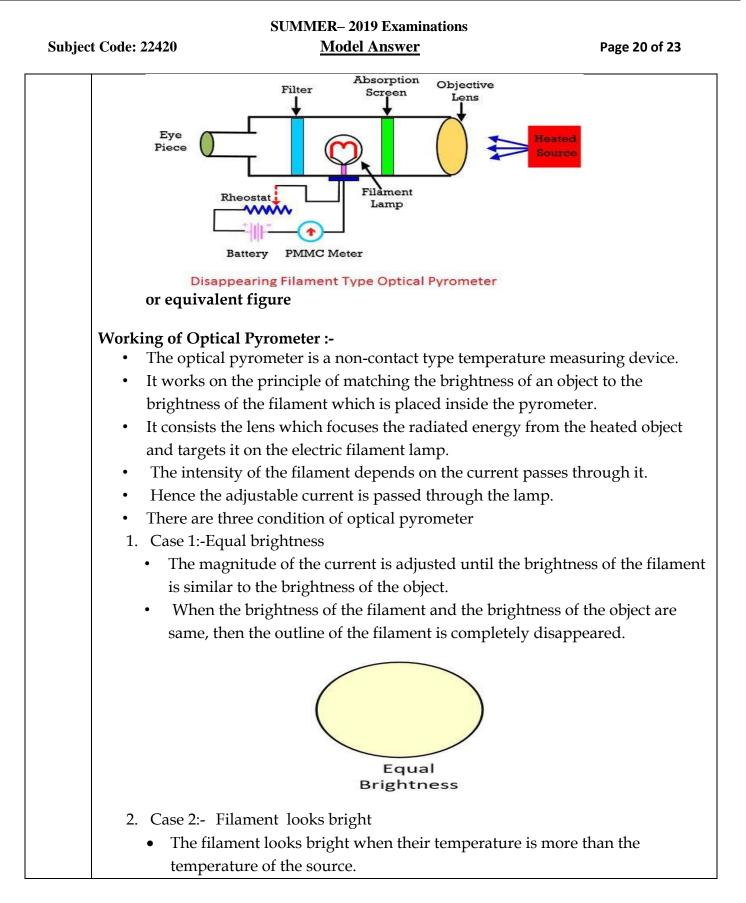

SUMMER-2019 Examinations Subject Code: 22420 Model Answer Page 16 of 23 Residual voltage: - ---- (1 Marks) The output voltage is ideally zero, when core is at center or null position. harmonics in excitation voltage and capacitance coupling between primary and secondary coils usually results in small but non zero null voltage called residual voltage **Residual voltage Diagram:** - (1 Marks) Output voltage E₀ Linear range Residual voltage A B Û **Displacement** or equivalent figure Why Rotameter is called variable area flowmeter? Explain the working of rotameter b) with neat diagram. State its one advantage and one disadvantage. Ans: (Rotameter: -1 Mark, Figure: 1.5 Mark & Explanation :1.5 Mark, One Advantage: -1 mark and One Disadvantage: -1 mark) Rotameter :-An variable-area flowmeter is one where the fluid must pass through a restriction whose area increases with flow rate. The height of the float is directly proportional to the flowrate Neat diagram of rotameter

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

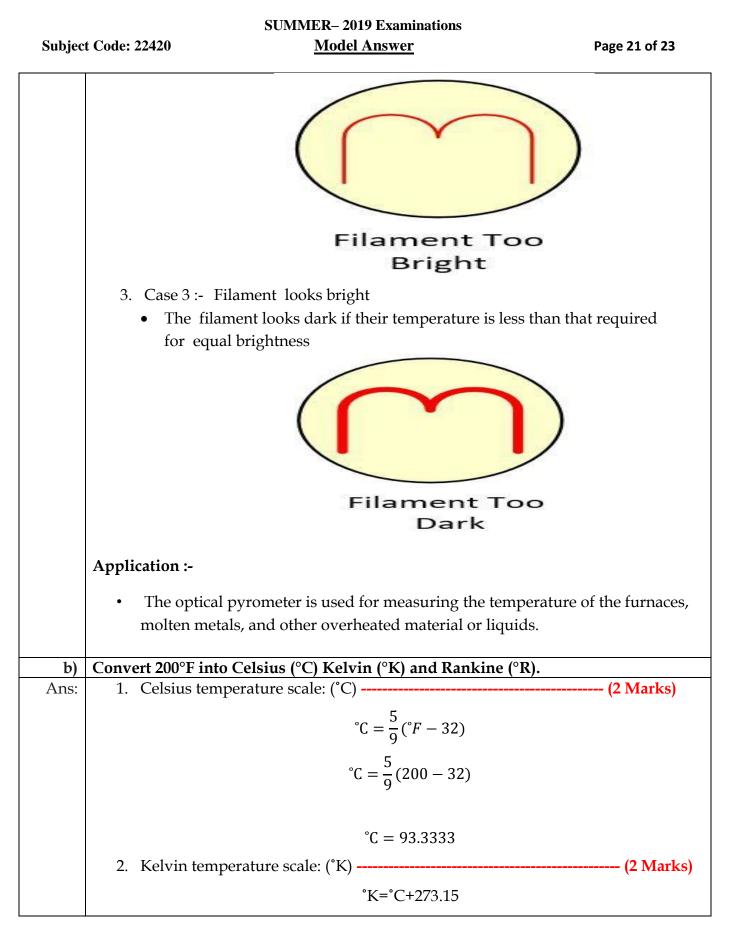
SUMMER– 2019 Examinations Model Answer

Page 17 of 23

Subject	t Code: 224	SUMMER– 2019 Examinations 20 <u>Model Answer</u>	Page 18 of 23
	by	The float reaches a stable position in the tube f the flowing fluid(i.e $S + A$) equals the dow f the weight of the float.	-
	• Inc	crease in the flow rate causes the float to ris	e higher in the tube
	• De	ecrease in the flow rate causes the float com-	e down to the lower level
	• Th	e float gives reading on a calibrated scale	which is on glass tube and the
	flo	w rate can be determined by direct observa	tion of the metering tube
	Advanta	ges: - (Any Two advantages are expected)	
	1. W	e can find the rate of flow by direct visual.	
		ere is a low-pressure loss in it.	
		ost of this equipment is less.	
		sy in construction.	1. (1
		e can work on it directly, without any samp	ble flows.
	6. No	o external power or fuel for its operation	
		ntages: - (Any Two disadvantages are exp	
		nis is not used where there is fast changes o	ccur in measurements.
		ow accuracy	
		equirement for buoyancy correction in liqui	ds
		abject to density, viscosity and temperature	
		ne fluid must be clean, no solids content	
		cosion of device (wear and tear) an be expensive for large diameters	
		perate in the vertical position only	
	0. 0	perace in the vertical position only	
c)	(i) Meter	he following troubles and related remedie does not show reading (ii) Meter show les er show high value of flow measured.	
Ans:		does not show reading	(2 Marks)
	S.No.	POSSIBLE CAUSES	CORRECTIVE ACTION OR REMEDIES
	1	 Scaling of inner wall of the pipe so that signal does not reach in proper direction Scaling causes attenuation and refraction of the signal 	 Required regular maintenances of meter Perform calibration
	2	 In case of doppler type instrument Does not work with pure liquids. 	 Requires minimum % of solids or bubbles (~5%)


Subject Code: 22420

Model Answer


Page 19 of 23

	ii) Meter	shows less value of	flow measured:	(2 Marks)	
	S.No.	POSSIBLE CAUSE	S	CORRECTIVE ACTION OR REMEDIES	
	1	Les measuremen		Flow material required les	S
		more than 10% s		than 10% solid/bubbles	
	2	If the pulsations	0	One possible way to reduce	5
			ow may temporarily	pulsations is by using a	
			flow range of the	damper such as an	
		flow meter. In th	nis situation, the flow	accumulator	
		displayed on the	e flow meter is		
		smaller than the	actual flow		
	, 	shows high value of		(2 Marks)
		BLE CAUSES		ION OR REMEDIES	
	-	pler meters will	Check minimum ?		
		to track bubbles	1	particle size (~ >100 um)	
		solids		n and check if Accuracy	
		bubbles will rise	is +/- 5% unless ca	alibrated on the pipe	
		er than the slurry			
Q.6		any TWO of the follo	0	12 Marks	
a)			working of optical py	cometer with neat diagram. Sta	ate
,		oplication.			
Ans:		ry: - 1 Mark, Figure: 2	Marks & Explanation	:2 Marks, One Application: - 1	
	Mark)				
	Pyrometr	5	1 1º . 1	1	
		1 5		asured is not possible due to	
	very ł	nigh temperature, Pyr	cometers are used. Ope	ration of pyrometer is based or	l
	therm	al radiation. Radiatio	on pyrometry measures	s the radiant heat emitted by ho	ł
	body.				
	5	am of optical pyrom	eter		
	0	1 17			

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

Subjet	ct Code: 224		- 2019 Examinations del Answer	Page 22 of 23			
			K=366.483				
	3. R	ankine temperature scale:		(2 Marks)			
		• (°R) Relation betwee	en °R & °F is given by,				
			$R = {}^{\circ}F + 459.69$				
		°I	R = 200 + 459.69				
			$^{\circ}R = 659.69$				
			OR				
		• Relation between °R	-				
			$^{\circ}R = \left(\frac{9}{5}\right) * ^{\circ}K$				
		[0	$R = \left(\frac{9}{5}\right) * 366.483$				
			$^{\circ}R = 659.669$				
c)		e between: (i) Ultrasonic ii) U-tube and well type r					
Ans:		points) (ii) U-tube and well type manometer (any three points) (i) Ultrasonic and Radar type level measurement: -					
	.,	9 1					
			(Any Three points	s expected: 1 mark each)			
	Sr.No.	Points	Ultrasonic level	s expected: 1 mark each)			
	Sr.No.	Points		· · · ·			
	Sr.No.	Points Measurement principle	Ultrasonic level	Radar level measurementHigh-frequency radar impulses or			
	1	Measurement principle	Ultrasonic level measurement Sound waves	Radar level measurementHigh-frequency radar impulses or electromagnetic waves			
	1	Measurement principle Accuracy	Ultrasonic level measurementSound wavesLow accuracy	Radar level measurementHigh-frequency radar impulses or electromagnetic wavesHigh accuracy			
	1	Measurement principle	Ultrasonic level measurement Sound waves	Radar level measurementHigh-frequency radar impulses or electromagnetic waves			
	1	Measurement principle Accuracy	Ultrasonic level measurement Sound waves Low accuracy Limited pressure and	Radar level measurementHigh-frequency radar impulses or electromagnetic wavesHigh accuracyExtreme temperature and pressure does not effect device			
	1 2 3	Measurement principle Accuracy Operating limits Environmental	Ultrasonic level measurement Sound waves Low accuracy Limited pressure and temperature limits Effect measurement	Radar level measurementHigh-frequency radar impulses or electromagnetic wavesHigh accuracyExtreme temperature and pressure does not effect device performance			

Subject Code: 22420

Model Answer

Page 23 of 23

Sr.No.	U-tube manometer	well type manometer
1	Both leg having same cross section area	Both leg having different cross section area
2	Transmitting fluid Manometric fluid	Applied Pressure
3	There are two tubes of equal cross section on either side.	There is a well on one side and a tub on other side.
4	Pressure drop is indicated by difference between heights of both tubes.	There is negligible change in the lev of fluid in well because of large cros section area.
5	Difference in heights in measured.	Single height is measured.

-----END------END------