22301

11920

3 Hours / 70 Marks

Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- a) State two advantages of plane table surveying.
- b) Define Swinging and Transiting.
- c) Define Latitude and Departure.
- d) State the function of Anallatic lens.
- e) Define 'degree of a curve'.
- f) List two uses of EDM.
- Name two software for GPS.

22301	[2]	
	N	Aarks
2.	Attempt any THREE of the following:	12
a)	Describe any one method of orientation of plane table surveying.	
b)	State and explain temporary adjustments of Theodolite.	
c)	Explain the principle of Tacheometry with the help of a neat sketch	

- d) Draw a simple circular curve and show the following on it.
 - (i) Forward tangent
 - (ii) Long chord
 - (iii) Deflection angle
 - (iv) Apex distance

3. Attempt any THREE of the following:

12

- a) Describe the procedure for measurement of horizontal angle by repetition method.
- b) Explain the principle of EDM with the help of a neat sketch.
- c) Describe the procedure to measure vertical angle by using electronic thedolite.
- d) Describe the procedure to determine co-ordinates of a station using GPS.

Marks

4. Attempt any THREE of the following:

12

- a) Compare radiation and intersection methods of plane table surveying on any two parameters.
- b) Following are the lengths and bearings of a closed traverse ABCDA.

Line	Length (m)	Bearing
AB	258.0	30°
BC	321.0	140°
CD	180.0	210°
DA	?	?

Calculate the length and bearing of Line DA.

c) Following are the corrected latitudes and departures of a closed traverse. Find the independent co-ordinates of the points of traverse.

Side	Latitude	Departure
AB	+ 225.5	+ 120.5
BC	- 245.0	+ 210.0
CD	- 150.5	- 110.5
DA	+ 170.0	- 220.0

d) Following observations were taken to determine the constants of tacheometer.

Station	Staff Horizonta Station distance (r	Horizontal	Vertical angle	Hair Readings	
		distance (iii)		Lower	Upper
A	В	51.430	6°30′	0.900	1.420
A	С	18.065	2°20′	1.140	1.320

Determine the constants.

e) Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m.

22301

Marks

5. Attempt any TWO of the following:

12

a) The following angles were measured in running a closed traverse ABCDEA.

$$\angle$$
 A = 87° 50′ 20″, \angle B = 114° 55′ 40″, \angle C = 94° 38′ 50″, \angle D = 129° 40′ 40″ and \angle E = 112° 54′ 30″.

If the bearing of line AB is 221° 18′ 40″, calculate bearings of the remaining lines.

b) Calculate the corrected consecutive co-ordinates for the following traverse. Apply Bowditch Rule.

Line	Length in 'm'	Latitude	Departure
AB	335	- 334.91	- 7.80
ВС	850	- 4.95	+ 849.99
CD	408	+ 407.44	- 21.35
DA	828	- 72.17	- 824.85

c) A tacheometer was set up at a station P and following readings were taken on a vertically held staff. The constant of the instrument was 100.

Station	Staff Station	Vertical angle	Hair Reading	Remarks
P	BM	- 4° 0′	1.050, 1.105, 1.160	RL of BM
P	Q	+ 10°0′	0.950, 1.055, 1.160	= 200 m

The instrument was fitted with anallatic lens. Determine distance PQ and RL of Q.

6. Attempt any $\underline{\text{TWO}}$ of the following:

12

- a) Describe step wise procedure to prepare the layout of a small building using total station.
- b) Apply knowledge of total station to prepare a contour map by describing its procedure.
- c) Demonstrate the utility of Remote Sensing and GIS applications in Civil Engineering with appropriate examples.