Sample Question Paper

Program Name	: Civil Engineering Program Group	
Program Code	: CE/CR/CS	22201
Semester	: Second	
Course Title	: Applied Mathematics	
Max. Marks	: 70	Time: 3 Hrs.

Instructions:

- 1. All Questions are Compulsory.
- 2. Answer each next main Question on a new page.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Non Programmable pocket calculator is allowed.
- 5. Programmable pocket calculator is not allowed.
- 6. Figures to the right indicate full marks.
- 7. Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Q.1 Attempt any <u>FIVE</u> of the following

a) Define Parametric Function with suitable example.

b) If
$$f(x) = x^3 + x^2 - 2$$
, find $f(1) - f(2)$.

c) Find
$$\frac{dy}{dx}$$
 if $y = x \cdot \tan x$

d) Evaluate
$$\int x \cdot e^x dx$$

e) Evaluate
$$\int \frac{1}{1 + \cos 2x} dx$$

- f) Find the area bounded by the curve $y = 3x^2$, X-axis & the ordinates x = 1, x = 3.
- g) State the Trapezoidal rule of numerical integration.

Q.2 Attempt any <u>THREE</u> of the following

a) Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3axy$

b) If $x = a(\cos t + t \cdot \sin t)$ and $y = a(\sin t - t \cdot \cos t)$. Find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$

c) The bending moment of a beam supported at the ends and uniformly loaded at a distance x from one end is given by $M = \frac{WL}{2} x - \frac{W}{2} x^2$ where W is the load of the beam per unit run. Find a point on the beam at which the bending moment is maximum.

```
12 Marks
```

d) A beam is bent in the form of the curve $y = 2 \sin x - \sin 2x$. Find the radius of curvature at $x = \frac{\pi}{2}$.

Q.3 Attempt any THREE of the following

12 Marks

12 Marks

a) Find the equation of the tangent and normal to the curve $2x^2 - xy + 3y^2 = 18$ at the point (3, 1).

b) Find
$$\frac{dy}{dx}$$
 if $y = x^{\tan x} + (\tan x)^x$

c) If
$$y = \log(\csc x - \cot x)$$
 find $\frac{dy}{dx}$
d) Evaluate $\int \frac{(\tan^{-1} x)^3}{1 + x^2} dx$

Q.4 Attempt any THREE of the following

a) Evaluate
$$\int \frac{dx}{\sqrt{1 + x - x^2}}$$

b) Evaluate
$$\int \frac{dx}{12\cos x - 5\sin x + 13}$$

c) Evaluate
$$\int x \cdot \log(1 + x) dx$$

d) Evaluate
$$\int \frac{\cos x dx}{(2 + \sin x)(3 + \sin x)}$$

e) Evaluate
$$\int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\cot x}}$$

Q.5 Attempt any TWO of the following

- a) Find the area between the parabola $y = x^2$ and the line y = x.
- b) Attempt the following:
 - i) Form the differential equation from the relation $y = A \sin mx + B \cos mx$ where A & B are arbitrary constants & m being an integer.
 - ii) Solve: $(y + x^2y)\frac{dy}{dx} (3x + xy^2) = 0$
- c) An equation relating to the theory of stability of an airplane is given by the equation $\frac{dv}{dt}$ = g.cos α – kv where v is the velocity; g & k being constant. Find an expression for the velocity if v = 0, when t = 0.

Q.6 Attempt any TWO of the following

a) Attempt the following:

i) Using Trapezoidal rule, calculate the approximate value of $\int_0^4 \sqrt{x} \, dx$ given by

Х	0	1	2	3	4
$y = \sqrt{x}$	0	1	1.4142	1.7321	2

ii) Using Simpson's one-third rule evaluate $\int_1^5 y \, dx$ using the following table

Х	1	2	3	4	5
у	10	50	70	80	100

- b) Using Simpson's $\frac{3}{8}$ th rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.
- c) Using Simpson's $\frac{1}{3}$ rd rule find the area under the curve $y = \sin x$ from x = 0 to $x = \pi$

taking $\frac{\pi}{6}$ as the common width of the strip. Compare the result with the exact area.

Scheme - I

Sample Test Paper - I

(40% of 5-Unit curriculum and 50% of 6-Unit curriculum)

Program Name	: Civil Engineering Program Group	
Program Code	: CE/CR/CS	
Semester	: Second	
Course Title	: Applied Mathematics	
Max. Marks	: 20	Time: 1 hour

Instructions:

- 1. All Questions are Compulsory.
- 2. Answer each next main Question on a new page.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Non Programmable pocket calculator is allowed.
- 5. Figures to the right indicate full marks.
- 6. Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Q.1 Attempt any FOUR of the following

- a) If $f(x) = x^2 + 6x + 10$ find f(0) + f(2).
- b) State whether the function $f(x) = \frac{x^3}{1 + x^2}$ is even or odd.
- c) Find $\frac{dy}{dx}$ if $y = \frac{x^2 + 1}{x^2 1}$
- d) Find $\frac{dy}{dx}$ if $y = e^{2x}(x^3 + 4)$
- e) Calculate the point of the curve $y = \log x$, when the slope is 1.
- f) Evaluate: $\int x (x 2)^2 dx$

Q.2 Attempt any THREE of the following

- a) Find $\frac{dy}{dx}$ if $y = (\tan x)^{\sin x}$
- b) Find the equation of tangent and normal to the curve $y = 4x \cdot e^x$ at origin.
- c) A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.

d) Evaluate :
$$\int \left\{ \frac{1}{1+x^2} - \frac{\cos x}{\sin^2 x} \right\} dx$$

4

08 Marks

Scheme - I

Sample Test Paper – II

(60% of 5-Unit curriculum and 50% of 6-Unit curriculum)

Program Name	: Civil Engineering Program Group	
Program Code	: CE/CR/CS	
Semester	: Second	
Course Title	: Applied Mathematics	
Max. Marks	: 20	Time: 1 hour

Instructions:

- 1. All Questions are Compulsory.
- 2. Answer each next main Question on a new page.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Non Programmable pocket calculator is allowed.
- 5. Figures to the right indicate full marks.
- 6. Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Q.1 Attempt any FOUR of the following.

a) Evaluate:
$$\int \frac{8^{\sin^{-1}x}}{\sqrt{1-x^2}} dx$$

b) Evaluate:
$$\int \frac{1}{(x-1)(x+3)} dx$$

c) Evaluate:
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

d) Find the area bounded by the curve $y = x^3$, X-axis & the ordinates x = 1, x = 3.

- e) Find the order & degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{4/3} = \left(y + \frac{dy}{dx}\right)^{3/2}$
- f) State the Simpson's $\frac{3}{8}^{\text{th}}$ rule of numerical integration

Q.2 Attempt any <u>THREE</u> of the following.

a) Evaluate: $\int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\tan x}}$

b) Solve:
$$x \frac{dy}{dx} - y = x^3$$

08 Marks

c) Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by Trapezoidal rule taking n = 4. Hence obtain the approximate

value of π .

d) Find the approximate volume of a log of wood 4.8 m long from the following

measurements, using Simpson's $\frac{1}{3}$ rd rule.

Distance	0	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8
Area	0.915	0.875	0.870	0.810	0.800	0.770	0.750	0.730	0.700